
International Journal of Computer Trends and Technology Volume 67 Issue 2, 12-16, February 2019

ISSN: 2231-2803 / https://doi.org/10.14445/22312803/IJCTT-V67I2P103 © 2019 Seventh Sense Research Group®

 This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/)

Original Article

Data Visualization with Python Pragmatic

Eyes

Sameer Shukla

System Architect, HCL America

6201 Breeze Bay Pt, Apt 1634, Fort Worth, Texas (USA) - 76131

Abstract - Data Visualization helps understand the

data's significance to technical and non-technical

people. As we know, the data volume in today's

scenario is huge in Petabytes. Architectures are quite

different from before to support such huge data

volume, and distributed systems play an important

role. This paper focuses on adapting Visualization

techniques in every phase of the Software

Development Process, which can be built using

Python and some graphical libraries like Matplotlib

and Seaborn. We can find problems in our data model

or event design using this.

Keywords - Microservices, Python, Visualization,

Kafka, Cassandra, Kafka-Python, Matplotlib.

I. INTRODUCTION

 Modern world applications are expected to be

highly available and responsive and should be able to

deal with Gigabytes, Terabytes, and Petabytes of data.

To deal with such expectations, companies are

shifting architecture from Monolith to Microservices

and trying to scale individual services and

incorporating distributed systems into their

architecture, such as Kafka, which is required for the

interaction between various services in the system.

Even the database selection choice is also distributed,

such as Cassandra. A picture is worth a thousand

words; data visualization plays an important role as

you can visually see the huge amounts of data in

graphs and charts and quickly make out where your

application is going. Data visualization during the

development phase also plays a vital role as you can

find some critical problems in the systems. In this

article, I am trying to showcase the importance of

visualization during the development phase and other

phases using Python and graphical libraries like

Matplotlib, Seaborn, and Bokeh.

II. VISUALIZATION TOOLS AND LIBRARIES

 Various lightweight graph libraries are available

in the python world, such as Matplotlib, Seaborn,

Bokeh, etc. These three are the most widely used; it

doesn't matter whether the application you are

developing is written in Java, Scala, or any language.

For data visualization, I recommend using Python

with the graph libraries mentioned above. The target

here is to create a Visualization tool in very fewer

lines of code irrespective of the language in which the

application is written.

A. Python

 We are going to use Python for our Visualization

purpose, and the reason is plain and simple; here, I

don't want to write hundreds of lines of code, and I

don't want to write HTML, CSS, and bloat my code

with JavaScript. Because my target here is to develop

Sameer Shukla. / IJCTT, 67(2), 12-16, 2019

13

a tool for debugging purposes and check application

behavior with the kind of data I am receiving in the

form of Pie Charts, Bar Graphs, Scatter Plots, etc.,

Python and the integration of graphical libraries like

Matplotlib, Seaborn, and Bokeh are very simple. We

can generate graphs and charts in less than 10 lines of

code, irrespective of whether it is a Microservices

environment, Cassandra, or Spark.

B. Matplotlib

 It's a huge 2D plotting library, and you need to

trial and error to finalize the plot of your use. For

example, if you want to check the state-wise sales,

you can go for bar graphs or pie charts; it depends on

what kind of data you want to visualize. If you check

the matplotlib gallery, you can find various charts and

graphs like Line, Bars, Markers, Statistical plots, pies,

polar charts, etc.

C. Seaborn

 Seaborn is also a Python data visualization

library that is based on Matplotlib. You can have

statistical graphics with Seaborn.

D. Bokeh

 Again, a Python-based data visualization library,

and you can have interactive graphs. Bokeh renders

its graphics using HTML and JavaScript, making it a

great candidate for building web-based interactive

dashboards.

III. USE CASE FOR VISUALIZATION:

MICROSERVICES

 Companies are developing microservices based

on Kafka; each Microservice communicates with each

other with the help of Kafka. Imagine one service

writing messages on a Kafka topic, and other services

will consume messages from the same topic. With

Kafka in place, you can scale your microservices by

simply increasing the number of brokers or by

increasing the number of Partitions. You can develop

microservice with the help of Kafka streams as well,

where you can pull the entire data set from Kafka,

then apply any reduce or map function according to

your requirement and redirect the modified message

to another topic for other services to consume

A. Advantage of Using Kafka

 Scalability: In case of any node failure, Kafka

quickly recovers itself, or you can add more brokers

for better scalability.

High Performance: Since Kafka is distributed, high

performance and scalability come naturally in using

Kafka

B. What is Kafka, and How data is written in Kafka

 Kafka is a publish-subscribe messaging system;

this use case is widely adopted in microservices

development, where all the tiny microservices talk to

each other with the help of Kafka; one microservice

can publish a message to another service to consume

messages from the same topic.

C. Pragmatic Introduction to Kafka

 Kafka is an open-source distributed data

streaming platform, and it was developed at Linked.

Over the period, Kafka evolved a lot and established

itself as a tool for building a real-time data pipeline.

There are various use cases where Kafka can be used;

some are Messaging, Log Aggregation, Website

Activity Tracking, Stream Processing, etc. Kafka's

storage unit is a partition, and a partition is an

immutable and ordered sequence of messages where

every new message will be appended to the end. A

partition is split across the multiple brokers, and the

partition is simply a flat file on the disk. When

writing happens in Kafka, it writes to an active

segment; once the segment is full, a new segment is

opened, which becomes the currently active segment.

In the image above, "0000000" is a segment this is

where the messages written to Kafka are stored,

“. index” file maintains the offset to the position in

the segment.log file

D. VISUALIZE

 Assuming we are developing microservices for

the e-commerce application, we want to visualize the

sales data based on State names and the number of

units sold in each state. Our tool will be consuming

messages with a different group-id from the topic in

the form of Key-Value pair, ensuring that we are not

touching the critical path in the microservices

development pipeline, where Key is the name of State

and Value is the number of units sold. For our tool

development, we will be using a library based on

Python named Kafka-Python and incorporating

Matplotlib, Seaborn, or Bokeh, any visualization

library of choice. Let's explore the code.

Sameer Shukla. / IJCTT, 67(2), 12-16, 2019

14

1. In the code above, we have imported

KafkaConsumer as we will consume messages

from the topic.

2. From line 3, we instantiated a consumer that

takes a topic name 'activity,' server name, which

is our localhost (Kafka Server running locally).

The other 3 properties are Kafka-specific,

indicating that we will start consuming messages

from the earliest offset. Once the message is

consumed, it is marked for auto-commit and

gives a group id to our application.

3. We are importing Matplotlib for plotting

purposes and instantiating consumers along with

lists, one representing state and the other

representing sales.

4. The Last step is where we will iterate through the

messages, and using the scatter plots, we will

plot our data.

The X-axis indicates the state names, and Y-axis

indicates Sales; let's see the graph for the following

inputs TX;290, AZ; 310, CA; 299, WA; 301

IV. USE CASE FOR VISUALIZATION:

CASSANDRA

 Cassandra is a distributed and decentralized

database. It is scalable and has no single point of

failure; it is elastic and scalable. Distributed

architecture and systems are the future because it is

independently scalable and always available. We can

easily add or remove nodes in Cassandra Cluster

when the volume of data goes up or down.

Cassandra's data will be queried based on the

Partitioning Key column, and it's a Primary Key in

Cassandra. You can consider it a Key in SortedMap;

Sameer Shukla. / IJCTT, 67(2), 12-16, 2019

15

the Key is nothing but a hash value. When the data is

written in Cassandra, the Partitioner generates a hash

value (token). This hash identifies the node/Partition

to which the data will reside.

Similarly, during querying the data again, Hash Value

(Token) will be calculated, Node/Partition will be

identified, and data returned to the user. We need to

select the Partitioning key column judiciously. We

need to make sure that the Partitioning key is evenly

distributed. Else we will have an unbalanced cluster,

and the performance will be impacted big time. To

avoid this, we need to ensure that our data model is

correct and our configurations. This unbalanced

Cluster problem is not easily identified because in

Cassandra, aggregate functions like count (*) are not

allowed, by allowed here, I mean if we have lots of

data in our system, say a million records count (*)

query will timeout, so there is no way to find this

problem until our read queries are impacted. This one

problem can be solved through our visualization tool,

and we can have a graph/chart in place. It can very

well inform us how our data is distributed and what

type of data is in the system. I mean everything from

Partitioning keys to clustering keys and other

columns by data here.

A. Use case

 We will explore an e-commerce application

where we will see state/country-wise sales data in Bar

graphs and Pie charts. We will see the top 10 states

with the greatest number of sales through the Bar

Graph, and with the Pie chart, we will see how much

percentage of data each state/country has in the

system.

B. Cassandra restrictions

a. In Cassandra, we should not execute aggregate

functions in the query like count (*) plus

functions like Group By are not allowed in

Cassandra

b. Because of its architecture, no Like queries are

allowed because Partitioner generates a token

value, and we cannot simply fire like query on

tokens.

c. No range query on Partitioning key, again

because Partitions are nothing but tokens and are

unordered, because of this, we cannot execute

range queries on Partitioning key. No Sorting

because data in Cassandra is scattered to

SSTables, and sorting means reading all those

SSTables and executing our sort; it's a very

heavy process that's why it's not recommended to

use sorting in Cassandra.

 Because of these limitations, we cannot directly use

something like Python-Cassandra and execute our

visualization tool; the approach that we should follow

here is to pull the data from Cassandra to a flat file

(sales.csv) and give this file as an input to Pandas

(Python library for data analysis) and then we can

execute our data visualization after sorting, filtering

and all the other necessary operations. It's a slightly

off routine process.

C. Pandas

Pandas is an excellent library for data analysis; some

of its features mentioned below make it an excellent

package for data analysis.

a. Allows the use of rows and labels

b. Easy handling of NaN values.

c. Can load data from different formats into Data

Frames.

d. It can merge different datasets.

Super easy integration with Matplotlib and Seaborn

D. Checking Country wise sales.

 First, we will organize our data.

 As you can see above, we have used Pandas; the

three imports you can see above are for NumPy,

pandas, and matplotlib. NumPy is the package for

Sameer Shukla. / IJCTT, 67(2), 12-16, 2019

16

scientific computing, Pandas is our library right now

for data analysis purposes, and matplotlib is used for

plotting purposes. First, we will read the data into the

data frame and give names to our columns, and in the

second line, df. Head () we are just checking our data;

the head () method will print the first 5 lines from the

file. Now we are all set to perform a group-by, sort

kind of aggregate operations and check them in the

graphs and charts for our visualization purposes.

 As you can see in line 21*, we are grouping the

data by country and checking the total sales done

against each country, but these bars are random. Let's

sort them in descending order and plot them again.

We simply sort the grab country data frame in

descending order and plot it. Look at the ease of use

these libraries bring into the picture, and we are not

writings here hundreds of lines of code; we are not

dealing with div issues in HTML or styling issues in

CSS no JavaScript errors we see here; we are simply

able to focus on our goal of Visualizing the data in

the system. Pie Charts: If we want to check how

much % sales are done by each country, we can use

pie charts; during the service or any application

development, you have all the internal data with you,

and you can very well check the data distribution in

percentages, which gives you a clear idea whether

your Partitioning key is balanced or not or exactly

how your data is distributed in the system.

V. CONCLUSION

 Here I have tried to show how we can visualize

the data during the development phase only; I

have not written any fancy JS, HTML, or CSS

files or not wasted hours and days on the

development of such utility. It doesn't matter

whether we are developing microservices using

Play, Scala, or Java, SpringBoot we can very

easily use Python and its charting libraries for our

debugging or identifying the data patterns in the

application purposes.

REFERENCES

[1] Kafka-Python:

https://docs.confluent.io/4.1.2/clients/confluent-kafka-

python/index.html
[2] Cassandra: https://docs.confluent.io/4.1.2/clients/confluent-

kafka-python/index.html

[3] Matplotlib: https://matplotlib.org/gallery.html
[4] Images: https://unsplash.com

[5] Apache Kafka: https://kafka.apache.org/

[6] Pandas: https://pandas.pydata.org/
[7] Seaborn: https://seaborn.pydata.org/

[8] Bokeh: https://bokeh.pydata.org/en/latest/

